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Abstract: The complex correntropy has been successfully applied to complex domain adaptive
filtering, and the corresponding maximum complex correntropy criterion (MCCC) algorithm has been
proved to be robust to non-Gaussian noises. However, the kernel function of the complex correntropy
is usually limited to a Gaussian function whose center is zero. In order to improve the performance of
MCCC in a non-zero mean noise environment, we firstly define a complex correntropy with variable
center and provide its probability explanation. Then, we propose a maximum complex correntropy
criterion with variable center (MCCC-VC), and apply it to the complex domain adaptive filtering.
Next, we use the gradient descent approach to search the minimum of the cost function. We also
propose a feasible method to optimize the center and the kernel width of MCCC-VC. It is very
important that we further provide the bound for the learning rate and derive the theoretical value of
the steady-state excess mean square error (EMSE). Finally, we perform some simulations to show the
validity of the theoretical steady-state EMSE and the better performance of MCCC-VC.

Keywords: complex; MCCC-VC; variable center; stability; EMSE

1. Introduction

Choosing the appropriate cost function (usually the statistical measure of error signal) is the
key problem in adaptive filtering theory and application [1–3]. In the presence of Gaussian noise,
it is best to using the minimum mean square error (MMSE) criterion. Therefore, a series of MMSE
based algorithms [4–7] have emerged during the past decades. The MMSE based algorithms use the
mean square value of the error between the desired signal and output signal as the cost function,
which has many attractive features, such as convexity and smoothness. In addition, MMSE has low
computational complexity since it only needs to calculate the second order statistics of the signals.
However, in many non-Gaussian cases, the MMSE based algorithms are not robust. To improve this
shortcoming, many kinds of non-MMSE criteria based algorithms have been developed in [8–16]. Since
signals are often expressed in complex forms in many practical scenarios [17,18], adaptive filtering in
complex domain is of great significance. During the past few years, some information criteria based
algorithms have been proposed for complex domain adaptive filtering [19–22]. Particularly recently
Guimarães defined a new similarity measurement between two complex variables based on complex
correntropy [19,20] and proposed the maximum complex correntropy criterion (MCCC) algorithm.
MCCC uses a complex Gaussian function as the kernel function, and derives the updation of weight
based on Wirtinger Calculus. The complex Gaussian kernel function is desirable due to its smoothness
and strict positive-definiteness. The performance of the MCCC algorithm is better than classic MMSE

Entropy 2020, 22, 70; doi:10.3390/e22010070 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-0470-0154
https://orcid.org/0000-0002-5028-5839
http://www.mdpi.com/1099-4300/22/1/70?type=check_update&version=1
http://dx.doi.org/10.3390/e22010070
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 70 2 of 15

based algorithms, and is robust to non-Gaussian noise. Moreover, MCCC has been widely applied to
many fields of machine learning and signal processing [23,24].

According to the MCCC, given two complex variables C1 = A1 + jB1 and C2 = A2 + jB2, complex
correntropy is defined by [19,20]

VC
σ (C1, C2) = E[κ(C1 −C2)] (1)

where A1, B1, A2, B2 represent real variables, E[·] denotes the expectation, and κ(C1 −C2) denotes the
kernel function with

κ(C1 −C2) = GC
σ (C1 −C2)

= 1
2πσ2 exp

(
−

(C1−C2)(C1−C2)
∗

2σ2

) (2)

and σ > 0 is the kernel width.
The purpose of adaptive filtering is to estimate the target variable T in some sense by designing

a model M to construct a output Y from input X. Under MCCC, we find this mode by maximizing the
complex correntropy between T and Y:

M∗ = argmax
M∈M

VC
σ (T, Y) = argmax

M∈M
E
[
GC
σ (T −Y)

]
(3)

whereM is the model assumption space which contains the possible models to construct the output Y
from input X, and M∗ is the optimal model.

However, the center of complex correntropy is always at zero, which is not the best option in the
case of non-zero mean noise. Although the maximum corentropy criterion with variable center in [25]
and [26] can be suitable for the variable center, they cannot be used for complex domain adaptive
filtering. To overcome their defects, this paper proposes the maximum complex correntropy criterion
with variable center (MCCC-VC).

The main contributions of this research lie in the following aspects: (1) we define a MCCC-VC
and give its probability explanation; (2) based on the MCCC-VC, we propose a novel adaptive filtering
algorithm in complex domain by utilizing the gradient descend approach; (3) we give effective and
feasible methods to estimate the kernel center and update the kernel width adaptively; (4) we derive
the bound for the learning rate, and the theoretical steady-state excess mean square error (EMSE) of
the MCCC-VC algorithm, and verify the theoretical analysis by simulations.

The organization of this paper is as follows: Section 2 defines the complex correntropy with
variable center and studies its properties. Section 3 proposes the MCCC-VC algorithm and provides
the method for the optimization of the parameters. In addition, Section 3 also studies the convergence
of the MCCC-VC algorithm and derives the theoretical steady-state excess mean square error (EMSE).
Section 4 verifies the correctness of the theoretical conclusions and the superior performance of the
MCCC-VC algorithm. Finally, Section 5 summarizes the conclusion of this paper.

2. Complex Correntropy with Variable Center

For two complex variables, the target variable T and the output Y, the complex correntropy with
variable center is defined as:

VC
σ,c(T, Y) = E

[
GC
σ (T −Y − c)

]
= E

[
1

2πσ2 exp
(
−
(T −Y − c)(T −Y − c)∗

2σ2

)]
(4)

where c ∈ C represents the center of the kernel function. When c = 0, (4) will return to the original
complex correntropy.
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The complex correntropy with variable center c consists of the whole even moments of T − Y
about the center c, which is as follows:

VC
σ,c(T, Y) =

1
2πσ2

∞∑
n=0

(−1)n

2nn!
E
[
|e− c|2n

σ2n

]
(5)

where e = T −Y is the complex valued error variable. With the increase of σ, the higher-order moments
around the variable center c would attenuate quickly. Therefore, the second-order moment is the key
factor which determines the value. In particular, when c = E[e] and σ→∞ , maximizing the complex
correntropy with c would be equal to minimizing the variance of the error.

Moreover, when σ→ 0 , we obtain

lim
σ→0

VC
σ,c(T −Y) = lim

σ→0

s s
GC
σ (tR − yR − cR, tI − yI − cI)pTY(tR, tI, yR, yI)dtRdtIdyRdyI

=
s s

δ(tR − yR − cR, tI − yI − cI)pTY(tR, tI, yR, yI)dtRdtIdyRdyI

=
s

pTY(tR, tI, tR − cR, tI − cI)dtRdtI

(6)

where δ(x, y) is the two-dimensional Dirac function with
{ s

δ(x, y)dxdy = 1
δ(x, y)= 0, x2 + y2 , 0

, the second line

is derived based on the fact that lim
σ→0

GC
σ (x, y) = lim

σ→0
1

2πσ2 exp
(
−

x2+y2

2σ2

)
has the same property as δ(x, y),

tR, yR, and cR are the real parts of t, y and c, tI, yI, and cI are the imaginary parts of t, y, and c,
and pTY(tR, tI, yR, yI) denotes the joint probability density function (PDF) of (T, Y). Furthermore,
we derive the following result:

lim
σ→0

VC
σ,c(T −Y) = lim

σ→0

s
GC
σ (εR − cR, εI − cI)pe(εR, εI)dεRdεI

=
s
δ(εR − cR, εI − cI)pe(εR, εI)dεRdεI

=
s

pe(cR, cI)dεRdεI

(7)

where pe(εR, εI) is the joint PDF of error. Thus, when σ→ 0 , the value of complex correntropy with
variable center c would approach pe(εR, εI) evaluated at (cR, cI).

3. MCCC-VC Algorithm

In this part, we derive a novel adaptive filtering algorithm based on maximum complex correntropy
criterion (i.e., minimum complex correntropy loss) with variable center (MCCC-VC).

3.1. Cost Function

We apply the MCCC-VC to adaptive filtering and derive the cost function as follows:

JC
VC−loss = GC

σ (0) − E
[
GC
σ (e(k) − c(k))

]
= 1

2πσ2

{
1− E

[
exp

[
−

((e(k)−c(k))(e(k)−c(k))∗)
2σ2

]]} (8)

where
e(k) = d(k) −wHx(k) (9)
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is the error at time instant k, w = [w1 w2 · · · wm]
T is the filter weight, d(k) is the desired signal at time

instant k, x(k) = [x(k) x(k− 1) · · · x(k−m + 1)]T is the input signal at time instant k, c(k) is the center
of the kernel at time instant k.

The essential idea behind the cost function (8) is that, in the practical case, even when the error
distribution is non-zero-mean, the proposed MCCC-VC can perform well, because MCCC-VC matches
well the error distribution.

Figure 1 compares the surfaces of the proposed MCCC-VC with MCCC, where the noise is
non-zero-mean complex Gaussian noise with unit variance. For visualization, we chose m = 1, and set
the system parameter and the mean of the noise as w0 = 5 + 5i and c = 6 + 6i, respectively. One can
see that the cost function of MCCC-VC is minimized at w0, whereas the cost function of MCCC is
minimized at some other place.

Entropy 2019, 20, x FOR PEER REVIEW  4 of 17 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )*

2 2

0

1 1 exp
2 2

σ σ

πσ σ

−  = − − 
   − −   = − −   
      

C C C
VC lossJ G E G e k c k

e k c k e k c k
E

 (8) 

where 

( ) ( ) ( )= − He k d k kw x  (9) 

is the error at time instant k , [ ]1 2   =  T
mw w ww  is the filter weight, ( )d k  is the desired signal at 

time instant k , ( ) ( ) ( ) ( ) 1   1= − − +  
T

k x k x k x k mx  is the input signal at time instant k , ( )c k  

is the center of the kernel at time instant k . 
The essential idea behind the cost function (8) is that, in the practical case, even when the error 

distribution is non-zero-mean, the proposed MCCC-VC can perform well, because MCCC-VC 
matches well the error distribution. 

Figure 1 compares the surfaces of the proposed MCCC-VC with MCCC, where the noise is 
non-zero-mean complex Gaussian noise with unit variance. For visualization, we chose 1m = , and 
set the system parameter and the mean of the noise as 0 5 5i= +w  and 6 6c i= + , respectively. One 
can see that the cost function of MCCC-VC is minimized at 0w , whereas the cost function of MCCC 
is minimized at some other place.  

  
(a) MCCC-VC (b) MCCC 

Figure 1. Surfaces of maximum complex correntropy criterion with variable center (MCCC-VC) and 
MCCC. 

3.2. Gradient Descent Algorithm Based On MCCC-VC 

Since the stochastic gradient descent approach requires less computational complexity, we 
adopt it to search the minimum of the cost function. Utilizing Wirtinger Calculus [27,28], we obtain 
the updation of the weight as follows: 

Figure 1. Surfaces of maximum complex correntropy criterion with variable center (MCCC-VC)
and MCCC.

3.2. Gradient Descent Algorithm Based On MCCC-VC

Since the stochastic gradient descent approach requires less computational complexity, we adopt
it to search the minimum of the cost function. Utilizing Wirtinger Calculus [27,28], we obtain the
updation of the weight as follows:

w(k + 1) = w(k) − µ

∂
[
1−exp

[
−

(e(k)−c(k))(e(k)−c(k))∗

2σ2

]]
∂w∗(k)


= w(k) + µ

2σ2 exp
[
−
|e(k)−c(k)|

2

2σ2

]
(e(k) − c(k))∗x(k)

= w(k) + ηw exp
[
−
|e(k)−c(k)|

2

2σ2

]
(e(k) − c(k))∗x(k)

(10)

where ηw =
µ

2σ2 is the learning rate for the weight.

3.3. Optimization of the Parameters in MCCC-VC

3.3.1. Optimization Problem in MCCC-VC

The two parameters center location c and the width of kernel σ act a pivotal part in the performance
of MCCC-VC. Thus, it is extremely important to optimize them to further improve the robustness and
convergence performance in the non-zero mean noise.
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The optimal model according to MCCC-VC is as follows:

M∗ = argmax
M∈M,σ∈Ω,c∈C

VC
σ,c(T, Y) = argmax

M∈M,σ∈Ω,c∈C
E
[
GC
σ (e− c)

]
(11)

In addition, the complex correntropy with variable center can be divided into three parts:

VC
σ,c(T, Y) =

s
GC
σ (εR − cR, εI − cI)pe(εR, εI)dεRdεI

= 1
2

s [
GC
σ (εR − cR, εI − cI)

]2
dεRdεI +

1
2

s
[pe(εR, εI)]

2dεRdεI

−
1
2

s [
GC
σ (εR − cR, εI − cI) − pe(εR, εI)

2
]
dεRdεI

(12)

Owing to the first term is independent from the optimal model, we can derive

M∗ = argmax
M∈M,σ∈Ω,c∈C

VC
σ,c(T, Y) = argmax

M∈M,σ∈Ω,c∈C
UC
σ,c(T, Y) (13)

where
UC
σ,c(T, Y) =

s
[pe(εR, εI)]

2dεRdεI

−
s [

GC
σ (εR − cR, εI − cI) − pe(εR, εI)

]2
dεRdεI

(14)

and
pe(εR, εI) = 2E

[
GC
σ (eR − cR, eI − cI)

]
(15)

The parameters can be optimized by

(M∗, σ∗, c∗) = argmax
M∈M,σ∈Ω,c∈C

UC
σ,c(T, Y) (16)

where Ω and C represent the allowed sets of parameters σ and c.

Remark 1. It can be seen that as long as the function UC
σ,c(T, Y) is maximized, M, σ, and c can be optimized

simultaneously. However, it is computationally demanding to compute and compare all the values of UC
σ,c(T, Y)

under all the possible parameters in the allowed sets. Moreover, it may be difficult to obtain the allowed sets of
parameters.

3.3.2. Stochastic Gradient Descent Approach

To further simplify the optimization problem, we propose a stochastic gradient descent based
online approach.

(1) When the model M is fixed,
s

pe(ε)dεrdεI is independent of the kernel width σ and the center
position c. In this case, σ and c can be optimized according to the following formula:

(σ∗, c∗) = argmin
σ∈Ω,c∈C

s [
GC
σ (εR − cR, εI − cI) − pe(εR, εI)

]2
dεRdεI

= argmin
σ∈Ω,c∈C

{s [
GC
σ (εR − cR, εI − cI)

]2
dεRdεI − 2E

[
GC
σ (e− c)

]}
= argmin

σ∈Ω,c∈C

{
−2E

[
GC
σ (e− c)

]
+ 1

4πσ2

}
(17)
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Provide N error samples
{
e(k)

}N
k=1, we can get E

[
GC
σ (e− c)

]
≈

1
N

N∑
k=1

GC
σ (e(k) − c(k)). Therefore,

we have the following formula:

(σ∗, c∗) = argmin
σ∈Ω,c∈C

−
 2

N

N∑
k=1

GC
σ (e(k) − c(k))

+ 1
4πσ2

 (18)

Furthermore, in order to simplify the optimization problem, we can set c(k) as the median or
mean of the error samples. Thus, we only need to optimize σ. We take 1/σ2 as a new variable σ̃,
and update σ̃ and σ2 using the stochastic gradient descent approach as follows:

σ̃(k + 1) = σ̃(k) − ησ


∂−

[
2
N

k∑
l=k−T+1

GC
σ (e(l)−c(k))

]
+ 1

4πσ2

∂σ̃


∣∣∣∣∣∣∣∣∣̃
σ=σ̃(k),c=c(k)

= σ̃(k) − ησ

{
−

[
1
πN

k∑
l=k−T+1

exp
(
−
|e(l)−c(k)|

2

2 σ̃(k)
)(

1− |e(l)−c(k)|
2

2 σ̃(k)
)]
+ 1

4π

} (19)

and
σ2(k + 1) =

1
σ̃(k + 1)

(20)

where c(k) is estimated online as c(k) =
k∑

l=k−T+1
e(l), and T is the smoothing length, ησ is the learning

rate for σ̃.
(2) When the kernel width σ(k) and the center position c(k) is fixed, the model M is optimized by

MCCC-VC using (10).

Remark 2. For the proposed MCCC-VC algorithm, the weight and the parameters are updated alternately at
each time instant k using (10), (19) and (20), respectively.

3.4. Performance Analysis

3.4.1. Convergence Analysis

The MCCC-VC algorithm is written as a form of nonlinear error:

w(k + 1) = w(k) + ηw f (e(k))x(k) (21)

with f (e(k)) = exp
[
−
|e(k)−c(k)|

2

2σ2

]
(e(k) − c(k))∗ being the scalar function of the error e(k).

Taking into consideration that
d(k) = wH

0 x(k) + v(k) (22)

the error is written as
e(k) = w̃H(k)x(k) + v(k) = ea(k) + v(k) (23)

where w̃(k) = w0 −w(k) is the weight error vector at time instant k, w0 is the system parameter,

ea(k) = w̃H(k)x(k) is the prior error, and v(k) is the additive noise at time instant k.
Therefore, we get the following formula

w̃(k + 1) = w̃(k) − ηw f (e(k))x(k) (24)
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By taking the square of the 2-norm of both sides, we can further get the following formula:

E
{
‖w̃(k + 1)‖2

}
= E

{
‖w̃(k)‖2

}
− 2ηwE

{
Re[ea(k) f (e(k))]

}
+ηw

2E
{
‖x(k)‖2

∣∣∣ f (e(k))∣∣∣2}
(25)

To guarantee the convergence of the MCCC-VC, the weight error power should be gradually
decreased. Thus, we obtain the bound for the learning rate as follows:

0 < ηw ≤
2E

{
Re[ea(k) f (e(k))]

}
E
{
‖x(k)‖2

∣∣∣ f (e(k))∣∣∣2} (26)

3.4.2. Steady-State Mean Square

If MCCC-VC arrives at steady-state, we have

lim
k→∞

E
{
‖w̃(k + 1)‖2

}
= lim

k→∞
E
{
‖w̃(k)‖2

}
(27)

Then, when k→∞ , we can get

2E
{
Re[(ea(k) − c) f (e(k))]

}
= ηwE

{
‖x(k)‖2

∣∣∣ f (e(k))∣∣∣2} (28)

According to the definition of the steady-state excess mean square error (EMSE), we have

S = lim
k→∞

E
[∣∣∣ea(k)

∣∣∣2] = E
[
|ea|

2
]

(29)

To obtain the theoretical steady-state EMSE, we present the following two assumptions [21,22,29]:

(1) v(k) is zero-mean distributed and independent of x(k), and x(k) is circular.
(2) ea(k) is zero-mean and independent of v(k).

Owing to the distributions of x(k), v(k), ea(k), and e(k) are not related to the time index k at the
steady-state, the time index is ignored in the following derivation.

The left side of (28) can be written as

L = E
{
ea

[
exp

[
−
|e−c|2

2σ2

]
(e− c)∗

]
+ e∗a

[
exp

[
−
|e−c|2

2σ2

]
(e− c)

]}
= E

{
exp

[
−
|e−c|2

2σ2

]
(ea(e− c)∗ + e∗a(e− c))

}
= E

{
g1(e)

(
2|ea|

2 + eav∗ + e∗av
)}

(30)

where

g1(e) = exp
[
−
|e− c|2

2σ2

]
(31)
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We use Taylor expansion to approximate g1(e) as

g1(e) ≈ g1(v) + 2Re
{
∂g1
∂e

∣∣∣∣
e=v
· ea

}
+Re

{
∂2 g1
∂e∗∂e∗

∣∣∣∣
e=v
· (e∗a)

2 +
∂2 g1
∂e∗∂e

∣∣∣∣
e=v
· |ea|

2
} (32)

where
∂g1

∂e
= exp

[
−
|e− c|2

2σ2

]
×

[
−
|e− c|2

2σ2
(e− c)−1

]
(33)

∂g1

∂e∗
= exp

[
−
|e− c|2

2σ2

]
×

[
−
|e− c|2

2σ2
((e− c)∗)−1

]
(34)

∂2g1

∂e∗∂e
= exp

[
−
|e− c|2

2σ2

]
|e− c|−2

×

 |e− c|4

(2σ2)2 −
3|e− c|2

2σ2 +
|e− c|2

σ2

 (35)

∂2g1

∂e∗∂e∗
= exp

[
−
|e− c|2

2σ2

]
((e− c)∗)−2

×

 |e− c|4

(2σ2)2

 (36)

Owing to x is circular, we can get the values of the following two items:

E
[
(e∗a)

2
]
= 0 (37)

E
[
ea

2
]
= w̃HxxTw̃∗ = 0 (38)

Based on the above derivation, if the higher-order terms are small enough, we can rewrite the left
side of (28) as follows:

L ≈ 2S exp
[
−
|v|2

2σ2

]
×

{
1−
|v|2

2σ2

}
(39)

The right side of (28) can be written as

R = ηwTr(RxxH )E
{∣∣∣ f (e(k))∣∣∣2}

= ηwTr(RxxH )E
{
exp

[
−
|e−c|2

σ2

]
|e− c|2

}
= ηwTr(RxxH )E

{
g2(e)

}
(40)

where

g2(e) = exp
[
−
|e− c|2

σ2

]
|e− c|2 (41)

In a similar way, we use a Taylor expansion to approximate g2(e) as

g2(e) ≈ g2(v) + Re
{
∂2 g2
∂e∗∂e

∣∣∣∣
e=v
· |ea|

2 +
∂2 g2
∂e∗∂e∗

∣∣∣∣
e=v
· (e∗a)

2
}

+2Re
{
∂g2
∂e

∣∣∣∣
e=v
· ea

} (42)

where
∂g2

∂e
= exp

[
−
|e− c|2

σ2

]
|e− c|2 ×

[
−
|e− c|2

σ2
((e− c)∗)−1

+ (e∗)−1
]

(43)

∂g2

∂e∗
= exp

[
−
|e− c|2

σ2

]
|e− c|2 ×

[
−
|e− c|2

σ2
((e− c)∗)−1

+ (e∗)−1
]

(44)
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∂2g2

∂e∗∂e
= exp

[
−
|e− c|2

σ2

]
×

[
|e− c|4

σ4
−

3|e− c|2

σ2 − 1
]

(45)

∂2g2

∂e∗∂e∗
= exp

[
−
|e− c|2

2σ2

]
|e− c|2((e− c)∗)−2

(
|e− c|4

σ4
−
|e− c|2

2σ2

)
(46)

If the higher-order terms are small enough, we can rewrite the right side of (28) as follows:

R ≈ ηwTr(RxxH )E
{

exp
[
−
|v− c|2

2σ2

]
|v− c|2

}
+ ηwTr(RxxH )S×R1 (47)

where

R1 = E
{

exp
[
−
|v− c|2

2σ2

] (
|v− c|4

σ4
−

3|v− c|2

σ2 − 1
)}

(48)

Finally, we get the theoretical steady-state EMSE as follows:

S =
ηwTr(RxxH )E

{
exp

[
−
|v−c|2

2σ2

]
|v− c|2

}
E
{
2 exp

[
−
|v−c|2

2σ2

]
×

[
1− |v−c|2

2σ2

]}
− ηwTr(RxxH )R1

(49)

Furthermore, when ηw is small enough, (49) is further simplified as

S =
ηwTr(RxxH )E

{
exp

[
−
|v−c|2

2σ2

]
|v− c|2

}
E
{
2 exp

[
−
|v−c|2

2σ2

]
×

[
1− |v−c|2

2σ2

]} (50)

Moreover, we derive the theoretical value of σ2 by setting
∂
{
−2E[GC

σ (e−c)]+ 1
4πσ2

}
∂σ2 = 0. In this way,

we have 1
πσ4 exp

(
−
|e−c|2

2σ2

)
−

1
πσ6 exp

(
−
|e−c|2

2σ2

)
|e−c|2

2 −
1

4πσ4 = 0. Due to e ≈ v at the steady state, we can

further obtain the theoretical value of σ2 based on the following approach:

σ2 =
E
{
|v−c|2

2 exp
[
−
|v−c|2

2σ2

]}
E
{
−

1
4 + exp

[
−
|v−c|2

2σ2

]} (51)

Since the right side of (51) depends on σ2, it is a fixed-point solution for the theoretical σ2.

Remark 3. The theoretical steady-state EMSE in (50) is accurate only when ea is small enough, since the
higher-order term can be negligible in this case. However, if the noise power or step size is too large, or the center
position of the kernel function deviates from the mean of the noise, there will be a large deviation between the
theoretical and simulated values of steady-state EMSE.

4. Simulation

In this section, we present some simulations to show the validity of theoretical results and the
superiority of MCCC-VC. We obtain all the simulation results by averaging over 300 Monte Carlo trials.

4.1. Steady-State Performance

In this part, the filter weight w0 =
[

w1 w2 · · · w10]
T is randomly generated, where wk =

wRk + jwIk, and wRk, wIk ∈ N(0, 0.1), wRk and wIk represent the real and imaginary components of
wk, and N

(
µ, σ̂2

)
denotes the Gaussian distributed variable whose mean and variance are µ and σ̂2,
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respectively. We randomly generate input signal x = xR + jxI. In order to show the robustness of
MCCC-VC, additive complex noise v = vR + jvI is added in the simulation, whose real and imaginary
parts are denoted by vR and vI, respectively. All algorithms initialize w with a zero vector.

Firstly, we illustrate the correctness of theoretical steady-state EMSEs. For each simulation,
30,000 iterations are carried out to make sure MCCC-VC reaches the steady-state, and the last
1000 iterations are used to obtain the simulated steady-state EMSEs. The theoretical kernel width
and steady-state EMSEs are calculated according to (51) and (50), respectively. Figures 2 and 3 show
the simulated and theoretical steady-state EMSEs of MCCC-VC under various noise variances and
learning rates, where v is Gaussian distributed with mean 3 + 3 j. It can be seen from both figures that
theoretical results are closely matching with simulated results.Entropy 2019, 20, x FOR PEER REVIEW  12 of 17 
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Then, we change the noise to binary noise, and the mean is also 3 + 3 j. In addition, the simulated
and theoretical steady-state EMSEs are obtained the same as before. Figures 4 and 5 show the simulated
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and theoretical steady-state results of MCCC-VC under various noise variances and learning rates.
Obviously, there is also a good matching between theoretical results and simulated results.
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4.2. Performance Comparison

In this part, we compare the performance of the proposed MCCC-VC algorithm with MCCC
and minimum complex kernel risk sensitive loss (MCKRSL) [22]. For the fair comparison, all three
algorithms use the gradient descent method to search for the optimal solution. We measure the
performance of all the algorithms by weight error power.

In this simulation, the noise v(k) is composed of two independent noises [16], i.e., v(k) =

(1− a(k))A(k) + a(k)B(k), where P(a(k)= 0)= 1 − c, and P(a(k) = 1) = c (0 ≤ c ≤ 1). A(k) is the
ordinary noise with small variance σ2

v= 1 whose real and imaginary parts are denoted by AR(k) and
AI(k), and B(k) is the outliers with large variance whose real and imaginary parts are denoted by BR(k)
and BI(k).
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In this simulation, we set c = 0.05 and BR, BI ∈ N(0, 100). In addition, we consider the following
four cases for A(k):

(1) AR(k), AI(k) ∈ N
(
3, σ2

v/2
)
;

(2) P
(
AR(k) = 3+σv/

√
2
)
= P

(
AR(k) = 3−σv/

√
2
)
= P

(
AI(k) = 3+σv/

√
2
)
= P

(
AI(k) = 3−σv/

√
2
)
= 0.5;

(3) AR(k), AI(k) ∈ U
(
3− σv/

√
2, 3+ σv/

√
2
)
, with U(α,β) denoting the uniform distribution over [α,β];

(4) AR(k)= 3+σv sinθ1k/
√

2, AI(k)= 3+σv sinθ2k/
√

2, where θ1k,θ2k ∈ U[0, 2π].

Figures 6–9 show the convergence behavior of various algorithms on the basis of weight error
power ‖w(k) −w0‖

2 under different noises, where the parameter settings of different algorithms are
summarized in Table 1. It can be seen clearly that the convergence performance of MCCC-VC is better
than other two algorithms in all cases.
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Table 1. Parameter setting of different algorithms.

Algorithm MCCC MCKRSL MCCC-VC

Parameters
η =

1× 10−3,
σ = 5.

η = 1.8× 10−4,
σ = 5,
λ = 3.

ηw = 4.8× 10−4,
ησ = 4× 10−4,
σ(0) = 5.

Notes: η and σ denote the learning rate and kernel width for MCCC and MCKRSL, and λ denotes the risk-sensitive
parameter for MCKRSL. Moreover, ηw, ησ denote the learning rates for the weight and kernel width of MCCC-VC,
and σ(0) denotes the initial kernel with of MCCC-VC.

5. Conclusions

The complex correntropy usually employs a Gaussian kernel whose center is zero, which is not the
best choice for many situations. To overcome this defect, this paper proposes the maximum complex
correntropy criterion with variable center (MCCC-VC). The complex correntropy is extended to the
case where the center can be anywhere. Furthermore, this paper also proposes an effective method to
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optimize the center position and the kernel width. More significantly, we analyze the convergence and
steady-state performance of MCCC-VC theoretically. Simulation results obtained in Section 4 support
the reliability of theoretical analysis and show the excellent performance of MCCC-VC.
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